H(t)=t^2+19t+14

Simple and best practice solution for H(t)=t^2+19t+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=t^2+19t+14 equation:



(H)=H^2+19H+14
We move all terms to the left:
(H)-(H^2+19H+14)=0
We get rid of parentheses
-H^2+H-19H-14=0
We add all the numbers together, and all the variables
-1H^2-18H-14=0
a = -1; b = -18; c = -14;
Δ = b2-4ac
Δ = -182-4·(-1)·(-14)
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{67}}{2*-1}=\frac{18-2\sqrt{67}}{-2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{67}}{2*-1}=\frac{18+2\sqrt{67}}{-2} $

See similar equations:

| 2y-7=5y-1 | | x-3(-4.5)=3 | | 2(x+5)+20=100 | | 2a-15=3a-6 | | -8(2r8)-8r=(3+2r) | | 3a2+3a+1=0 | | 3^2+3x-5=13 | | 1x+16=4x-11 | | 2x+2=x+11, | | x−67+8=−1 | | -42.5=3y-31.7 | | s/3+4=2 | | a/4+20=45 | | x−85−2=4 | | 2=3x+2/3+1/5x=2/3x | | 3^-2b=1/243 | | 90+8x-9+10x=180 | | 7x−(−10+5x)+17=43 | | x²+18x=0 | | 4/5x-9=6 | | 4y-2y-5=7 | | 2x−3/5=−7 | | 3k-8=7k+4 | | 2p+68=9p-100 | | 3-(2x+5)=15+4x | | 2x−35=−7 | | (-2p)-38=40 | | 30=4d–18 | | -6+x=−3 | | 7x-3x-8=0 | | 2x+45=8 | | -2a-2=16 |

Equations solver categories